Gujarati
Hindi
14.Waves and Sound
normal

A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \left( {ft - \frac{x}{\lambda }} \right)$ . The maximum particle velocity is equal to four times the wave velocity if

A

$\lambda  = \frac{{\pi {y_0}}}{4}$

B

$\lambda  = \frac{{\pi {y_0}}}{2}$

C

$\lambda  = \pi {y_0}$

D

$\lambda  =2\pi {y_0}$

Solution

A transverse wave is described by the equation,

$y=y_{0} \sin 2 \pi\left(f t-\frac{\pi}{\lambda}\right)$

The maximum velocity of particle

$v_{\max }=y_{0} .2 \pi f \ldots .(1)$

The velocity of wave,

$v_{\text {wave }}=\lambda f \ldots \ldots(2)$

Given,

$v_{\max }=4 v_{\text {wave }}$

$y_{0} 2 \pi f=4 \lambda f$

$y_{0} \pi=2 \lambda$

$\lambda=\frac{\pi y_{0}}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.